Use the grid to solve each problem.

Answers
$\xi=$ Tree
(15) = House
$\square=1$ Square Yard

1) Which tree is closest to the house?
2) Which tree is furthest from the house?
3) If you were to go 7 yards east and 8 yards north from the house which tree would you end up at?
4) Which tree is further north? Tree D or tree F ?
5) Kaleb wanted to plant a new tree, but wanted to make sure it was at least 2 yards from a preexisting tree. Should he plant a tree 5 yards east and 4 yards north of his house?
\qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
6) Which ship is closest to the buoy?
7) Which ship is furthest from the buoy?

$$
\begin{aligned}
& \mathbb{B}=\text { Ship } \\
& \sqrt{\square}=\text { Buoy } \\
& \square=1 \text { Square Mile }
\end{aligned}
$$

10. \qquad
8) Which ship is 3 miles east and 6 miles north from the buoy?
9) Which ship is further east? Ship A or ship F?
10) A new ship wanted to fish, but the captain wanted to make sure they were at least 2 miles from another ship. If he sailed 2 miles east and 5 miles north would that spot suit him?

Use the grid to solve each problem.

1) Which tree is closest to the house?
2) Which tree is furthest from the house?
3) If you were to go 7 yards east and 8 yards north from the house which tree would you end up at?
4) Which tree is further north? Tree D or tree F ?
5) Kaleb wanted to plant a new tree, but wanted to make sure it was at least 2 yards from a preexisting tree. Should he plant a tree 5 yards east and 4 yards north of his house?
6) Which ship is closest to the buoy?
7) Which ship is furthest from the buoy?
8) Which ship is 3 miles east and 6 miles north from the buoy?
9) Which ship is further east? Ship A or ship F?
10) A new ship wanted to fish, but the captain wanted to make sure they were at least 2 miles from another ship. If he sailed 2 miles east and 5 miles north would that spot suit him?

Answers

1. \qquad
G
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. B
7. \qquad
$\begin{array}{ll}\text { 8. } & \mathbf{C} \\ & \mathbf{A}\end{array}$
8. \qquad
